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The Young's modulus and Poisson's ratio 
of arsenic, antimony and bismuth 
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The orientational dependences of the Young's modulus and Poisson's ratio of the A7 
structure elements arsenic, antimony, and bismuth are investigated, using available 
experimental data of the six elastic compliance constants. The behaviour of these technical 
elastic constants in antimony and bismuth is shown to differ not only in degree but also in 
kind from that of arsenic, which exhibits the characteristics expected of a layer-like crystal; 
arsenic is elastically a very anisotropic material, its Young's modulus varies by a factor as 
large as 11.3: the largest anisotropy ratio reported for a metallic element. 

1. In t roduct ion 
A study of the anisotropy of the elastic behaviour 
of the group VB semimetals arsenic, antimony, 
bismuth is continued here by a comparison 
between their Poisson's ratios and Young's 
moduli. In general, details of Poisson's ratio in 
crystalline solids are sparse. These elements 
constitute a unique series by virtue of their 
rhombohedral A7 structure of space group 
D ~a (R3m). The crystal lattice is comprised of two 
interpenetrating face-centred rhombohedra. The 
trigonal (z) axis, formed by the intersection of 
three mirror planes mutually oriented at + 120 ~ 
lies along the long body diagonal of the primitive 
unit cell defined from the lattice translation 
vectors al, a2, a3. Three options are open for the 
bisectrix (y) axis; the chosen y-axis is defined by 
projecting an ai onto the trigonal plane; the 
positive y-direction is then taken as outwards 
from the origin 0 of the al (see Fig. 1 of [1 ]). A 
positive binary (x) axis then completes the right- 
handed set. The signs of the components of many 
tensors depend upon the definition of a right- 
handed axial set in the crystal being studied; for 
example, the signs of the magnetoresistivity 
tensor components [2, 3] and of C14 [1, 4, 5], 
and the orientation dependence of the Umkehr 
effect [6, 7] depend upon this assignment. 

An interesting feature is that while its 
symmetry is identical to that of bismuth (rhombo- 
hedral angle e~ = 57 ~ 19') and antimony 
(a = 57 ~ 14'), the crystal lattice of arsenic 
(~ = 54 ~ 10') is much more distorted and tends 
towards a layer like structure; planes normal to 
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the trigonal (z) direction occur in pairs and 
binding between these successive double layers is 
weak [1, 8]. A grossly oversimplified but useful 
model for arsenic, in which tightly-bound 
double layers are assumed to be held together by 
van der Waals forces, gives the correct magnitude 
for the z-axis linear compressibility and the 
thermal expansion [1]. Recently, as part of a 
study of the anisotropy of elastic behaviour, the 
orientation dependence of elastic wave propaga- 
tion in arsenic, antimony and bismuth [8], and 
also in Bi2T% and Bil.6Sb0.4T% [9], has been 
compiled and contrasted. In layer-like crystals 
vibrations are excited preferentially in the 
directions of greatest linear compressibility 
because these have lower frequencies. All these 
materials, but arsenic much more strongly than 
the others, exhibit the characteristics of layer-like 
crystals: high, direction-insensitive velocities of 
waves transmitted within the tightly-bound 
layers and smaller velocities along the direction 
(z) of weakest binding. 

To obtain a clearer physical insight into the 
elastic properties of crystals than is provided by 
the six elastic stiffness constants, the conventional 
elastic moduli have to be considered. These 
describe the deformation of the crystals under 
static loads. Previously Pace, Saunders and 
Stimengen [1] have examined the effects of 
hydrostatic pressure; arsenic is the least com- 
pressible of the elements as far as bulk dilation is 
concerned, but is the most readily compressed 
along the z-axis. This property is understandable 
on the basis of the weak interlayer binding of 
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arsenic. A further physical appreciation can be 
achieved by comparing and contrasting the 
Poisson's ratios and Young's moduli of these 
elements. In spite of the great importance of 
these parameters little work is available on their 
anisotropy in materials of  moderately low sym- 
metry; Crocker and Singleton [10] have 
detailed the orientation dependences of the 
Young's and the shear moduli in mercu ry -  
another material belonging to the 3m point 
group. Recently, Turley and Sines [11] have 
discussed methods for obtaining the directional 
behaviour of Young's modulus, the shear 
modulus and Poisson's ratio in cubic crystals. It 
is essentially their trigonometric method for 
determining Poisson's ratio that has been 
extended here to obtain numerical values for this 
parameter in the group V elements. 

2. Procedure for Calculation of 
Poisson's ratio and Young's 
modulus 

The generalized form of Hookes'  Law is 

Ei~ = Si jk~ 6 k t  (1) 
where E~j and (rk~ are the strain and stress 
tensors respectively. For  trigonal crystals belong- 
ing to the Laue group RI, which includes the 
point group of interest here, the elastic compli- 
ance tensor S~7~z can be written in matrix 
notation (replacing subscripts 1 t by 1, 22 by 2, 
33 by 3, 23 and 32 by 4, 13 and 31 by 5, and 12 
and 21 by 6) as 

a l l  812 Slg S14 0 0 
$12 a l l  S13 -- S14 0 0 
Sis $1~ $33 0 0 0 
814 - -S14 0 844 0 0 (2) 
0 0 0 0 S ~  $1~ 
0 0 0 0 S~ $66 

where S~6 is equal to 2($11 - $1~). 

Poisson's ratio relates lateral strain to 
longitudinal strain resulting from a longitudinal 
stress which is, from Equation I, 

EJJ/(ii = S j j i i  (Yii/Sii i i  (Tit = S j j , i / S i i i i  (3) 

For  an isotropic material longitudinal extension 
is always accompanied by lateral contraction, so 
that Poisson's ratio is defined as - S jm/S i i i i  so 
as to give practical values which are greater than 
zero for such materials. However, in single 
crystals Poisson's ratio has values which depend 
on the directions of the stress and strain, andboth 
positive and negative values can be found. For  
an arbitrary set of axes, Poisson's ratio (v~/) can 
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be written as - Si~j ' /S i i i i ' ,  using the fact that 
Siekz equals S~z,~. To calculate v~/ the tensor 
transformation law is used to obtain the primed 
compliances. 

Silica" = ai~ ain ak~ at, q Smn~oq (4) 

f 
X 

Figure 1 General transformation of axes. 0x' is defined by 
c~ and/3. The direction ofy' in the plane perpendicular to 
x ' is defined by the angle 3 between y' and the meridianal 
tangent drawn perpendicular to x' and lying in the 
x'z-plane. 

Let the x'-axis be in the direction of the applied 
stress. Then y' and z' will be in the plane 
perpendicular to 0x'. If v12' is considered, it is 
then necessary to evaluate - S ~ ' / S l t '  (using the 
contracted subscript notation) for various 
orientations o fy '  in its plane. Note that $11' has a 
constant value for a given direction of applied 
stress. The method outlined by Turley and Sines 
[11 ] has been used to calculate direction cosines, 
relative to the crystal axes, of the y-axis  as a 
function of the angle it makes with the meridianal 
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tangent for the plane. Using the angles as 
defined in Fig. 1 the direction cosines are: 

[aij ] = 

Dcos~ - Esin3 FcosS - GsinS Hcos~ (5) 
lDsinS + Ecos~ Fsin8 + GcosS Hsin~ J 

where 
A = cosc~ cos{3 E = - sina 
B = sina cos/3 F = - sina sinp 
C = sin/3 G = cos~ 
D = - cos~ sin/3 H = sin/? 

Substitution of values obtained from Equation 5 
into Equation 4 leads to the desired result. 
Equations for $11' and S12' for trigonal symmetry 
are given: 

S l I '  = al~ 4 $11 + all 2 al~ ~ (2S12 + $66) + 
a134 S33 q- a132(1 --  a l3  s) (2Slz + S4~) + 
2a12 a13(3all 2 - a122) Sla (6a) 

Sly' = (all z a212 + a122 a~2 ~) Sll + 
(a212 a122 + a l l  2 a222) S12 + [a232(a112 q- a122) 
+ ala2(a21 ~ + a~22)] Sla + 
[2a~1 all(a23 alz + ala a~2) + 
a22 a23(al l  2 - -  a122) + a12 ala(a212 - -  a222)] S14 
"4- a232 a132 S33 -}- 

[alz a23(a12 a22 -4- ax~ a~x)] S,~ + 
a2~ a2~ a~x a~2 Sr (6b) 

The form of Equations 6a and b enables certain 
other primed coefficients to be calculated. For 
example, S~z' can be found by substituting a~, 
a22 , a23 for alx, a~2, axz in the equation for $11' , 
and so on. A computer programme has been 
prepared to perform these calculations as the 
angle ~ varies from 0 to 360 ~ given values of 
al~, a~, a~3 (direction cosines of the applied 
stress direction) and of the unprimed compli- 
ances as the input data. 

Young's modulus is the ratio of stress in some 
direction to the resulting strain in the same 
direction. I f  the applied stress is along the x-axis, 
then Young's modulus is given by 1/S~m. To 
find its value for any stress direction, it is 
necessary to evaluate 1/Sm~' from Equations 
6a and b where axe, ar~ and a~a define the 
direction of interest. 

3. R e s u l t s  a n d  D i s c u s s i o n  
Calculations of Young's modulus and Poisson's 
ratio for arsenic, antimony and bismuth have 
been performed using the elastic compliance data 
reproduced in Table I. Unlike Young's modulus 
the Poisson's ratio cannot be represented by a 
surface because its value depends on both the 

T A B L E  I Elastic compliance constants of  arsenic, 
ant imony and bismuth (10 -13 cm 2 dyn -1) 

Arsenic Antimony Bismuth 

S~i 30.3 16.2 25.74 
S12 20.2 - 6.1 - 8,01 
S13 - 55.2 - 5.9 - 11.35 
$14 1.67 - 12.2 - 21.5 
S33 137.8 29.5 40.77 
S44 45.0 38.6 115.9 
S6~ 20.2 44.6 67.51 

Reference [1 ] [5 ] [4] 

direction of the applied stress and on the strain 
direction in the plane normal to this. A conveni- 
ent way of representing Poisson's ratio is to plot 
its angular dependence superimposed on a 
standard projection of the lattice so that it is 
centred on the point on the standard projection 
representing the direction of the applied stress. 
This is illustrated in Fig. 2 for arsenic, antimony 
and bismuth, in which the direction cosines for 
the point at the centre of each small diagram are 
given. Thus the points around the circumference 
of the semicircle ACB represent directions in the 
xy-plane; the point 0 at the circle centre is the 
trigonal (z) direction, points A and B' correspond 
to the + y- and - y-directions, respectively; the 
+ x-direction is represented by point C. Crystal 
symmetry considerations lead to an equivalence 
of A' with A, and B' with B, so that calculations 
done for any 120 ~ sector of the standard 
projection suffice to give a complete description 
of Poisson's ratio in these crystals. Fig. 2 is 
drawn for 180 ~ , however, in order to show more 
clearly the difference in form of the cross- 
sections obtained when the applied stress is in 
the yz-plane and making an angle of 45 ~ with the 
+ y- and with the - y-direction. Although the 
layout in Fig. 2 describes the general features of 
the anisotropy of  Poisson's ratio for each 
element, to provide more readily accessible 
quantitative data for the parameter enlarged 
sections for each element are presented in Figs. 3, 
4 and 5. 

The effect of the layer-like nature of arsenic on 
its elastic behaviour can be clearly seen in Fig. 2a. 
The shape of each Poisson's ratio section is 
determined almost entirely by the angle that the 
applied stress direction makes with the z-axis. 
Thus when the stress is in the xy-plane, the shape 
is so similar for each that one diagram suffices 
(curve 1 of Fig. 3 which corresponds to A, F, B, 
C, A', F' and B' in Fig. 2a) to describe Poisson's 
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Figure 2 Directional dependence of Poisson's ratio for 
various directions of applied stress in (a) arsenic, (b) 
antimony and (c) bismuth. They are drawn on a standard 
projection on to the xy-plane. Direction cosines of the 
stress directions corresponding to the various curves are: 
A(0, 1,0); A ' ( -  0.866, 0.5, 0); B(0.5, 0.866, 0); B'(0, - 1, 
0); C(1, O, 0); D(0, 0.707, 0.707); D'(0.612, -0.354, 
0.707); E(0, - 0.707, 0.707); F(0.866, 0.5, 0); F ' ( -  0.5, 
0.866, 0); G(0.455, 0.521, 0.707); H(0.696, 0.113, 0.707); 
O(0, 0, 1). 

ratio:  differences are within the error arising 
f rom that  in the compliance constants used in the 
calculation. A similar cylindrical symmetry is 
found for angles other than 90 ~ between the 
z-axis and the stress direction (curve 2 in Fig. 3 
corresponds to D, G, H, D ' ,  E o f  Fig. 2a). It  
should, perhaps, be repeated that  when consider- 
ing the meaning of  these curves a positive 
Poisson's  ratio means a contract ion as a result o f  
a tensional stress whereas expansion occurs in 
directions where there is a negative value. Exam- 
ples o f  the latter case are found in certain stress 
directions in arsenic and bismuth. The essential 
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Figure 3 Detailed behaviour of Poisson's ratio for arsenic. 
Direction cosines of normal to each curve are - -  (0, 0, 1); 

'(n~, n~, 0); . . . . .  (n~, r~z, 1/~/2). 

behaviour of  arsenic under a stress applied in the 
xy-plane can be seen from curve 1 o f  Fig. 3. The 
lattice contracts along the z-axis (perpendicular 
to the layers) and expands in the appropriate 
perpendicular direction with strains o f  respective- 
ly 1.8 and 0.7 times the longitudinal one. 

The Poisson's ratios of  antimony and bismuth 
(see Figs. 2b and c, 4 and 5) differ in several 
respects from those in arsenic: the layer-like 
characteristics are much less evident, while for 
stresses at an angle to the z-axis the behaviour 
now depends much more on the x- and y- 
components  (compare curves A and F in Fig. 2b 
and c). When compared with each other 
antimony and bismuth are seen to be quite 
similar, although the anisotropy in bismuth is 
rather greater than that in antimony. In both 
elements there is a marked difference between the 
behaviour under a stress applied in the + y + z 
quadrant (D) and that in the - y + z quadrant 
(E), as would be expected. 

The dependence upon orientation of  Young's  
modulus for the three elements is illustrated in 
Fig. 6a and b. The Young's  modulus surface 
exhibits the inversion symmetry expected for 
materials o f  this point group. For a stress 
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(b) 
Figure 4 Detailed behaviour of Poisson's ratio for 
antimony. Direction cosine of normal to each curve are 
(a) (0, 0, 1); . . . .  (0, - 0.707, 0.707); . . . . .  (0.5, 
0.866, 0). 
(b) (0, 1, 0); . . . .  (0.707, 0.707, 0); . . . .  (0 696~ 
0.113, 0.707). 

direction in the xy-plane, this modulus is 
independent o f  orientation and the computed 
values are for arsenic 3.30 x 101~ dyn cm -z, for 
bismuth 3.89 x 10 n dyn cm -2 and for antimony 
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F i g u r e  5 Detailed behaviour of Poisson's ratio for 
bismuth. Direction cosines of normal to each curve are 
(a) (0, 0, 1); . . . . . .  (0, 1, 0); . . . .  (0, 0.707, 0.707). 
(b) (0.455, 0.521, 0.707); . . . .  (0, - 0.707, 0.707) 
. . . .  (0.5, 0.866, 0). 
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6.17 x 101. dyn cm -2. The Young's  modulus of  
arsenic shows the characteristics expected of a 
layer-like lattice with weak binding between the 
layer planes; the minimum value is 0.726 x 1011 
dyn cm -~ for a stress applied along the direction 
(z) of  weakest binding. The maximum value 
(8.18 x 10 n dyn cm -2) lies in the + y + z  
quadrant of the mirror plane at an angle of 31 ~ 
from the + y-axis; there is a second maximum 
(6.9 x 10 al dyn cm -2) at 30 ~ from the - y-axis 
in the - y + z quadrant. Arsenic is elastically a 
very anisotropic material with an anisotropy 
factor of 11.3, considerably greater than the ratio 
of 7.0 for mercury, previously quoted as the most 
anisotropic pure metallic material [10]. In 
antimony the Young's  modulus behaviour is 
curious and demonstrates the importance of 
correct ( +  x + y + z) axial assignment in these 
materials; the maximum value (12.5 x 10 n dyn 
cm -2) lies in the mirror plane in the - y + z 
quadrant at an angle of 62 ~ from the + z-axis, 
while the values in the + y + z quadrant are 
much smaller; the minimum value (3.39 x 101~ 
dyn cm -2) is that for a stress applied along the 
z-axis, and the anisotropy ratio is therefore 3.7, 
much less than that for arsenic but still large 
(see Table XIX, ref. [12]). The Young's  modulus 
of  bismuth is much less direction dependent 
(anisotropy factor 2.85) but now the minimum 
no longer occurs when a stress is applied along 
the z-axis but for one applied at 48.5 ~ from the 
+ z-axis in the + y + z quadrant. The maximum 
value of Young's  modulus for this element is that 
for a stress along a direction 71 ~ from the 
+ z-axis in the - y + z quadrant. 

To conclude, a method for computing the 
Poisson's ratio in anisotropic materials has been 
developed and applied in particular to the 
rhombohedral,  A7 structure semimetals arsenic, 
antimony and bismuth of point group 3m. The 
directional dependence of Young's  modulus, as 
well as the Poisson's ratio, has been investigated 
for these materials. Both these technical constants 
reflect strongly the layer-like nature, especially in 
the case of  arsenic; thus the anisotropy of 
Poisson's ratio is large in planes normal to 
particular stress directions. The limits on 
Poisson's ratio of + 0.5 and - 1 . 0 ,  which 
follow from stability conditions for isotropic 
materials, do not apply for single crystals and 
values obtained range outside these figures. The 
Young's  modulus surface cross-sections also 
evidence the great anisotropy of the A7 structure 
semimetals. 
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Figure 6 Cross-sections of the Young's modulus surface for arsemc, 
(b) yz-plane. 
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antimony and bismuth: (a) xz-plane; 
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